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Since its inception, not too long ago, the science of catalytic 
antibodies has undergone a remarkable maturation process.1 

From initial "proof of concept" and demonstration of funda­
mental, enzyme-like characteristics, antibodies have been shown 
to catalyze a broad scope of organic transformations, including 
difficult and unfavorable chemical reactions.2 The relevance 
of the field to synthetic organic chemistry has been demonstrated 
recently by the ability to run these reactions with gram-scale 
quantities.3 Here we go one step further and show for the first 
time that catalytic antibodies can be effectively used in natural 
product synthesis. 

(—)-a-Multistriatin, 1, is an essential component of the 
aggregation pheromone of the European elm bark beetle, 
Scolytus multistriatus (Marsham), which is the principal vector 
of Dutch elm disease.4 The severe devastation of the elm 
population in the northeastern United States has resulted in 
extensive studies of the synthesis5 and field utilization6,7 of 1. 
In order to achieve the required absolute configuration in all 
four asymmetric centers (IS,2R,4S,5R), most of the previous 
syntheses of 1 employ enantiomerically pure natural products 
as starting materials.5 We focused on the opportunity to achieve 
the required chirality via asymmetric synthesis of ketone 2 using 
antibody catalysis. Monoclonal antibody 14D9 has already been 
proven an effective catalyst for hydrolysis of a variety of 
substrates that are structurally related to 2, including a cyclic 
acetal,8 ketals,9 epoxides,10 and enol ethers.1112 One could 
therefore expect that ketone 2 would be readily available by 
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antibody-catalyzed enantioselective protonolysis of the corre­
sponding enol ethers 3a and 3b.13 This antibody-catalyzed step 
could be the only source of asymmetry in the molecule, provided 
that the following chemical steps proceed with control over the 
relative stereochemistry. 

In acidic, aqueous media, both isomers are hydrolyzed to 
racemic ketone 2 at a comparable rate. Antibody 14D9 
catalyzes this reaction under mildly acidic conditions (Scheme 
I).14 Interestingly, catalysis with the Z enol ether 3a is much 
more effective (k0Jkm = 65 000) than with the E isomer, 3b 
(kcJkm = 5000).15 This enzyme-like catalysis is evident from 
the observed Michaelis-Menten kinetics (3a, Km = 230 ^M, 
fecai = 0.36 min-1 at pH 6.5; 3b, Km = 310 ^M, fccat = 0.044 
min-1 at pH 6.0) and from the fact that catalysis is totally 
inhibited in the presence of stoichiometric quantities (with 
respect to 14D9) of the methylpiperidinium hapten against which 
this antibody has been elicited.8 Both 3a and 3b are hydrolyzed 
by 14D9 to produce ketone 2 with the same absolute configu­
ration (S), probably due to the structural similarity between both 
substrates.16 The high rate acceleration in the case of 3a allows 
the reaction to be driven to near completion to produce 2 in 
greater than 99% ee. 

Because this specific reaction is not catalyzed by any known 
enzyme or other protein or any known biological component, 
there is no need to use a purified antibody.17 Efficient catalysis 
is thus achieved with a partially purified 14D9 which was 
precipitated from the ascites fluid by saturated ammonium 
sulfate (SAS). We carried out the antibody-catalyzed reaction 
on a preparative scale using very simple organic-laboratory 
equipment according to a procedure that has been developed 
by Whitesides18 for enzyme-catalyzed reactions and by Reymond3" 
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Scheme 1. Stereoselective Synthesis of a-Multistriatina 

CO2Me 

OR OR ' 
9 70:30 10 
a) R = H 
b) R = P-BrC6H4CO 

" Key: (a) RuCl3, NaIO4, CCl4, CH3CN, H2O. (b) Ethylene glycol, 
PPTS, benzene, (c) LiAlH4, ether, (d) PCC, CH2Cl2. (e) CBr4, PPh3 

CH2Cl2. (f) n-BuLi, NCCO2Me, THF. (g) MeCu, TMEDA, ether, (h) 
DIBAL-H, THF, toluene, (i) BH3-SMe2 , then H202/NaOH. (j) 
P-BrC6H4COCl, Et3N, DMAP, CH2Cl2, column chromatography, (k) 
LiAlH4, ether. (1) PPTS, CH2Cl2. 

for this reaction with 14D9. In each catalytic cycle a solution 
of the enol ether 3a (180 mg, 0.65 mmol) in DMF (1 mL) was 
added to a solution of a crude SAS fraction of antibody 14D9 
(22.5 mL containing 225 mg of protein, 0.0015 mmol) in bis-
tris buffer (50 mM, pH 6.5) and the mixture was stirred at 24 
0C. Progress of the reaction was monitored by HPLC. It could 
also be seen visually, as the starting mixture was turbid-white 
(due to relatively lower solubility of the starting material relative 
to that of the product) and became clear as the reaction reached 
completion. Recovery of the catalyst after each cycle was 
achieved using cellulose dialysis bags (allowing diffusion of 
molecules smaller than 12—14 kDa).3a The reaction was inter­
rupted after 60 h at 80% conversion by transfer of the mixture 
into a dialysis bag, and the mixture was dialyzed into 500 mL 
of the same buffer over 16 h. The antibody solution was taken 
to the next catalytic cycle with a fresh solution of 3a. The buffer 
solution was saturated with sodium chloride and extracted with 
dichloromefhane. As reported in the previous large-scale use 
of 14D9, only minor deterioration of catalytic activity could be 
observed over the first five cycles of the reaction.32'9 

Ketone 2 was converted to 1 in a sequence of 12 chemical 
reactions (Scheme 1). The aromatic portion of 2 was exhaus­
tively degraded with RuCb and sodium periodate.20 The 
resultant keto acid was then converted to ketal alcohol 4 by 
reaction with ethylene glycol and catalytic amounts of pyri-
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dinium p-toluenesulfonate (PPTS) in benzene followed by 
reduction with LiAlFLt in ether. An NMR spectrum of the 
Mosher ester of 421 indicated 92% ee, reflecting only minor 
loss of enantiomeric purity throughout these three steps. 
Alcohol 4 was oxidized with pyridinium chlorochromate in 
dichloromethane to the corresponding aldehyde. The latter was 
treated with a solution of triphenylphosphine and carbon tetra-
bromide in dichloromethane to give the dibromoalkene, 5.22 

Treatment of 5 with n-butyllithium and methyl cyanoformate 
produced the substituted methyl propargylate 6. Reaction of 
the latter with "MeCu" (prepared from methyllithium and CuI 
in THF and tetramethylethylenediamine) afforded geometrically 
pure (Z) <x,/3-unsaturated ester 7.23 Reduction of this ester with 
diisobutylaluminum hydride in toluene—THF afforded the cor­
responding allylic alcohol, 8, with retention of the (Z) geometry. 
Treatment of 8 with a solution of borane—dimethyl sulfide com­
plex in THF followed by oxidation with basic (NaOH, 3 N) 
hydrogen peroxide produced a 70:30 mixture of two diastere-
omeric products: 9 (having the required 4S,6/?,7S configuration) 
and its 4S,6SJR diastereomer, 10, respectively. Esterification 
with 4-bromobenzoyl chloride produced the corresponding bis-
bromobenzoate derivatives, which were easily separated by 
column chromatography. The purified diol 9 was then recovered 
via reductive cleavage with L1AIH4. Finally, treatment of 9 
with catalytic amounts of PPTS in dichloromethane followed 
by Kugelrohr distillation at 110 0C afforded (-)-a-multistriatin, 
1, in the form of a colorless oil.24 

In conclusion, the relevance of antibody catalysis to synthetic 
organic chemistry has been demonstrated here by an efficient 
total synthesis of an important, biologically active natural 
product. All four asymmetric centers originate from a key, 
antibody-catalyzed protonolysis of an enol ether. That specific 
step is a unique example of a chemical transformation which is 
difficult to achieve either by an available synthetic methodology 
or via catalysis with a known enzyme.25 

The synthesis of natural products remains the ultimate testing 
ground for new concepts in organic chemistry. This has been 
the case, for example, with the advent of organometallic chem­
istry throughout the past four decades. Thus, the key point in 
the present study is not simply that one can make a-multistriatin, 
or even that this is now the best way to synthesize the com­
pound, but rather that catalytic antibodies perform competitively 
in the important testing ground of natural product synthesis. 
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